现代工学院张伟华与鲁振达课题组成功实现了单量子点的确定性组装

现代工程与应用科学学院张伟华教授与鲁振达教授课题组合作开发了一种基于热探针刻蚀/改性制备技术的纳米模板,并成功实现了单量子点(及其他亚20纳米功能颗粒)阵列、团簇,及颗粒-纳米银线耦合结构的确定性组装

尺寸下降到20纳米以下时,纳米颗粒会呈现出宏观世界所不具备的特性,如分立能级吸收性,超顺磁。特别的,半导体纳米颗粒(量子点)由于其独特的量子发光特性,已被广泛的应用在显示、传感、量子信息处理等领域。今天随着合成技术的发展,各类功能纳米颗粒可控的合成已经成为现实,但如何将这些纳米乐高逐个拼接在一起组成复杂结构甚至器件仍是一个未决的难题。为此,在过去二十年间科学家尝试各种技术路径,通过化学修饰、静电、颗粒操控等方法实现微米及亚微米颗粒的组装。但对于20纳米之下的颗粒,由于颗粒-衬底相互作用极弱,迄今仍缺少简易、高效、精确、广适用面的组装方法。目前相对有效方法依赖表面化学改性与静电作用其模板制备复杂,仅针对单一材料,难以制备纳米颗粒团簇,无法解决多种材料异质集成问题。

有鉴于此,张伟华教授与鲁振达教授课题组合作开发了一种基于热扫描探针改性模板的单颗粒组装技术。该技术将扫描探针的针尖加热至900 ℃以上,可对聚合物表面刻蚀的同时实现表面改性,使微结构区域的表面能显著升高实验测量理论计算显示改性后局域吸附提高可达2倍以上,从而大幅度提高纳米颗粒在改性区域的组装效率。此外,表面能的升高使液面在微结构内的接触角降低,增强了颗粒所受毛细力使其更易于被束缚在微结构当中。

图1 热表面改性模板辅助纳米组装技术示意图:模板制备与纳米组装过程

该方法不涉及特殊化学静电作用,为此对纳米颗粒的材料没有特定要求,相比于传统方法具有更广的适用性。为证实这一点,文章演示包括单颗10纳米量子点65%20纳米金颗粒(95%),20纳米聚苯乙烯荧光小球97%等材料的高效组装通过调整微结构的几何尺寸,该方法制备金纳米颗粒各种规则形状的密堆团簇

图2 小尺寸纳米颗粒的组装结果 a)10纳米量子点 b)20纳米聚苯乙烯荧光小球 c)20纳米金颗粒 d)20纳米金颗粒的各种规则密堆团簇

此外,由于该方法基于扫描探针技术可精确获取表面形貌信息,使得多步组装结构的精确对准成为可能。利用此优势,工作演示了量子点-纳米银线耦合结构的制备,展示了该技术在多材料跨尺度异质面的巨大潜力。

图3 量子点-银纳米线异质结构的制备 a)制备过程示意图 b1)单根银纳米线光镜照片 b2)对应的银纳米线形貌扫描图 b3)在银纳米线顶部制备微结构 b4)组装量子点后的荧光图像

由于高精度、高确定性与广适用面,并可与已有工艺结合,该方法有望为集成量子光学信息、光学超分辨、纳米生化传感器等方向带来更多的可能性,推动相关领域的发展。

现代工程与应用科学学院17硕士孟岩论文第一作者19硕士程刚在组装设备的搭建与机理分析方面也做出了重要贡献张伟华教授与鲁振达教授为论文的共同通讯作者相关成果 Deterministic Assembly of Single Sub-20 nm Functional Nanoparticles Using a Thermally Modified Template with a Scanning Nanoprobe 发表于Advanced MaterialsDOI: 10.1002/adma.202005979工作也得到了南京大学固体微结构物理国家重点实验室,生命分析化学国家重点实验室,江苏省功能材料设计原理与应用技术重点实验室、智能光传感与调控教育部重点实验室,以及科技部纳米专项(2016YFA0201104的支持。

论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202005979